

004O-4039(93)E0347-M

Sapogenins and Dimethyldioxirane: a New Entry to Cholestanes Functionalized at the Side Chain.

Paolo Bovicelli^{*}, Paolo Lupattelli, Donatella Fracassi

Centro C.N.R. di Studio per la Chimica delle Sostanze Organiche Naturali, Dipartimento di Chimica, *Università "La Sapienza", P. le A. Moro, 5 - 00185 Roma, Italy.*

Enrico Mincione*

DipartimentoD.A.B.A.C., Università della Tuscia, Via. S. Camillo de Lellis, 01100 Viterbo, Italy.

Abstract: *A new and simple opening of the sapogenin qiroketal si& chain by Dh4LlO as* $oxy functionalizing agent$, with the aim to get an easy approach to steroidal functionalized side *chains from natural compounds available in large amounts, is reported.*

Dioxiranes, new and powerful oxidants, have shown a great efFectiveness and utility in **the selective** oxyfunctionalization of steroids, as reported for the hydroxylation at the benzylic C9 of estrone¹, at C₂₅ of cholestane derivatives², at C₅ of cholanic acids³, and at C₁₄ and C₁₇ of pregnane and androstane steroids⁴.

Continuing our study on the site-selective oxyhmctionalization of steroids by dioxiranes we tested **the** chemical behaviour of other natural compounds, sapogenins. These last are in fact available in large amounts in nature, and for this reason they are well used as starting material in a number of industrial process for **the** synthesis of bioactive steroids such as cortisone⁵.

We report here a new and simple opening of the spiroketal side chain of sapogenins in high yields and mild reaction conditions by oxyfunctionalization of the activated ethereal carbon⁶ with DMDO.

Tigogenin acetate 1 (scheme 1) was selectively oxyfunctionalized at C_1 ₆-H bond to give the corresponding C_{16} hemiketal 4 as the only product (r.t., 2 h, 95% yield).

In the same way hecogenin 2 and 5,6-dibromodiosgenin 3 were converted into the corresponding C_{16} hemiketals 5 and 6 (r.t., 2 h, >90% yield). Subsequent treatment in very mild conditions (40°C) with acetic anhydride in acetic acid of the formed C₂₂, and C₁₆ hemiketals gave the corresponding 16,22-dioxo-27**acetoxycholestane derivatives 7,8 and 9 in quantitative yields.**

In the case of diosgenin acetate 10, having the C₅-C₆ double bond, the oxidation with 1 mole of DMDO led exclusively to the 5,6-epoxides. The addition of a second mole of the reagent led to the oxyfunctionalization at Cl6 to give the epoxyhemiketal **11. The** acetolysis of **11 in very mild** condition, led to **12 as the only product, the oxirane ring been untouched.**

To investigate the selectivity of DMDO toward different-activated C-H bonds, we prepared 13, which has two different C-H ethereal bonds at C₁₆ and C₂₂, by hydrogenolysis of diosgenin (scheme 2). 13 was

″он DMDO, r t, 2h > 90% AcO ÷ 1 $X = \alpha - H$; $Y = H_2$ 4 X= α -H; Y=H₂ 2 X=α-H; Y=O 5 X=α-H; Y=O 3 X=Br (trans diastereoisomers); 6 X=Br (trans diast.); $Y=H_2$ $Y = H_2$ CH, OAc Ac_2O , $AcOH$ 40°C, quant. 7 $X=\alpha+H$; Y=H₂ 8 X=α-H; Y=O 9 X=Br (trans diast.); $Y=H_2$ DMDO, 2 moles 'nо 25°C, 3 h, 92% AcO 10 11 CH, OAc $Ac_2O, AcOH$ 40°C, 2 h, >95% Ac0

Scheme1

selectively oxyfunctionalized at C₁₆-H bond by a molar amount of DMDO to give the hemiketal 14 (0°C, 4 h,

84% yield).

 $\boxed{12}$

This is probably due to a less hindered steric enviroment at C_{16} position compared to the C_{22} one. 14 showed to be stable in mild acidic conditions (dil. HCl), but **gave a mixture of products in the presence of** strong acids such as conc. H_2SO_4 . Nevertheless we obtained an interesting opening of the hemiketalic moiety by reaction with p-toluenesulphonic acid supported on silica gel' which yielded 15 via initial hydrolysis of the acetate at C_{26} .

Otherwise, treatment of 14 **with** DMDO led directly to the dioxoderivative 7, probably via the dihydroxylated intermediate 16.

Since the operative conditions of other degradations of sapogenins, like that reported from Marker δ , are very harsh (240°C, Ac₂O, AcOH), we claim that our method, via DMDO, is an approach to alternative oxidative degradations in two synthetic steps to give steroidal-functionalized side chains.

Acknowledgements. We thank the Board of "Progetto Finalizzato Chimica fine e secondaria" of the C.N.R. of Italy for financial support.

References and Notes

- 1. Bovicelli, P.; Lupattelli, P.; Mincione, E.; Prencipe, T.; Curci, R.; J. Org: Chem., 1992, 57, 2182-2184.
- 2. Bovicelli, P.; Lupattelli, P.; Mincione, E.; Prencipe, T.; Curci, R.; J. Org: Chem., 1992, 57, 5052-5054.
- 3. Bovicelli, P.; Gambacorta, A.; Lupattelli, P.; Mincione, E.; Tetrahedron Lett., 1992, 33, 7411-7412.
- 4. Bovicelli, P.; Lupattelli, P.; Fiorini, V.; Mincione, E.; Tetrahedron Lett., 1993, 34, 6103-6104.
- 5. Mann, J.; Secondary metabolism; Clarendon Press: Oxford, 1978, p. 129.
- 6. Recent reports showed that simple ethers were easily oxidized by DMDO, so that, for example, methyl ethers gave the corresponding ketones. Van Heerden, F.R.; Dixon, J.T.; Holzapfel, C.W.; Tetrahedron Lett., 1992, 33, 7399-7402.
- 7. D'Onofrio, F.; Scettri, A.; Synthesis, 1985, 1159.
- 8. Fieser, L.; Fieser, M.; Steroids, Reinhold Publishing Corporation, New York; Chapman & Hall, LTD., London; pp. 547-554.
- 9. Significant nmr signals of main products:

4. ¹H-nmr, δ (ppm): 0.69 (3H, s, C₁₈-H), 0.79 (3H, s, C₁₉-H), 0.78 (3H, d, J=6.2 Hz, C₂₇-H), 0.97 (3H, d, J=7.5 Hz, C₂₆-H), 4.63 (1H, m, C₃-H). ¹³C-nmr δ (ppm): 116.1 (C₁₆), 110.9 (C₂₂). 5. ¹H-nmr, δ (ppm): 0.77 (3H, d, J=6.2 Hz, C₂₇-H), 0.86 (3H, s, C₁₉-H), 0.96 (3H, s, C₁₈-H), 1.04 (3H, d, J=6.9 Hz, C₂₁-H), 3.5 (2H, d, J=8 Hz, C₂₆-H), 4.62 (1H, m, C_{3-H)} ¹³C-nmr δ (ppm): 213 (C₁₂), 170.7 (COO-), 114.4 (C₁₆), 110.9 (C₂₂). 7. ¹H-nmr, δ (ppm): 0.74 (3H, s, C₁₈-H), 0.8 (3H, s, C₁₉-H), 0.94 (3H, d, J=6.64 Hz, C₂₇-H), 0.99 (3H, d, J=7.5 Hz, C₂₁-H), 2.0 (3H, s, AcO), 2.03 (3H, s, AcO), 3.91 (2H, d, $J=6.25$, C₂₆-H), 4.7 (1H, m, C₃-H). ¹³C-nmr δ (ppm): 171.2, 171.9 (COO-) 214.0, 218.8 (C=O). **8.** ¹Hnmr, δ (ppm): 0.9 (3H, d, J=6.6 Hz, C₂₇-H), 0.9 (3H, s, C₁₉-H), 0.99 (3H, d, J=7.2 Hz, C₂₁-H), 1.06 (3H, s, C₁₈-H), 1.97 (3H, s, AcO), 2.0 (3H, s, AcO), 3.88 (2H, d, J=6.2 Hz, C₂₆-H), 4.64 (1H, m, C₃-H). 11. Mixture of α and β -epoxides. ¹H-nmr, δ (ppm): 0.62, 0.65 (3H, 2s, C₁₈-H), 0.76 (3H, d, J=6.5 Hz, C₂₇-H), 0.92 (3H, d, J=6.5 Hz, C₂₁-H), 0.96, 1.20 (3H, 2s, C₁₉-H), 1.96, 1.98 (3H, 2s, AcO), 2.83 (0.5H, d, J=4.4 Hz, C₆-H, α-epoxide), 3.02 (0.5 Hz, d, J=2.4 Hz, C₆-H, β-epoxide), 3.5 (2H, broad d, J=7.5 Hz, C₂₆-H), 4.70 (0.5 H, m, C₃-H, β -epoxide), 4.88 (0.5 H, m, C₃-H, α -epoxide). ¹³C-nmr δ (ppm): 171.0, 170.9 (COO), 129.3, 128.5 (C₁₆), 116.5, 11.4 (C₂₂). 12. Mixture of α and β-epoxides. 0.73, 0.76 (3H, 2s, C₁₈-H), 0.95 (3H, d, J=6.6 Hz, C₂₇-H), 1.02 (3H, d, J=5.9 Hz, C₂₁-H), 1.03, 1.10 (3H, 2s, C₁₉-H), 2.01, 2.03 (3H, 2s, CH3COO at C3), 2.05 (3H, s, CH3COO at C₂₆), 2.91 (0.5, d J=4.2 Hz, C₆-H, α-epoxide), 3.11 (0.5, d, J=2.2 Hz, β-epoxide), 3.90 (2H, d, J=6 Hz, C₂₆-H), 4.38, 4.95 (1H, 2m, C₃-H). 14. ¹³C-nmr δ (ppm): 0.72 (3H, s, C₁₈-H), 0.72 (3H, s, C₁₉-H), 0.91 (3H, d, J=6.7 Hz, C₂₇-H), 0.99 (3H, d, J=6.5 Hz, C₂₁-H), 1.98. 2.02 (6H, 2s, AcO at C₃ an at C₂₆), 3.85 (3H, m, C₂₆-H and C₂₂-H), 4.65 (1H, m, C₃-H). ¹³C-nmr δ (ppm): 170.9, 171.4 (2 COO), 115.0 (C₁₆), 89.0 (C₂₂). 15. ¹H-nmr, δ (ppm): 0.72 (3H, d, J=6.62 Hz, C₂₇-H), 0.75 (3H, s, C₁₈-H), 0.81 (3H, s, C₁₉-H), 0.90 (3H, d, 7.1 Hz, C₂₁-H), 2.0 (3H, s, AcO), 2.88 (1H, bdt, J=10.9 Hz, C₂₂-H), 3.75 (2H, m, C₂₆-H), 4.65 (1H, m, C₃-H). ¹³C-nmr δ (ppm): 220 (C₁₆), 170.9 (COO), 78.6 (C₂₂), 75.1 (C₂₆), 73.6 (C₃), 64.1 (C₁₇).

(Received in UK 3 November 1993; revised 29 November 1993; accepted 3 December 1993)